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CONTACT INTERACTION OF METAL-LIKE CA.RBIDES, NITRIDES AND BORIDES 

WITH REFRACTORY METALS AT HIGH TEMPERATURES 

G. V. Samsonov, L.  V. Strashinskaya and E.  A. S h i l l e r  

AE3STRACT 

Detailed r e s u l t s  a r e  presented of a study of t h e  

i n t e r a c t i o n  of powdered carbides ( T i c ,  ZrC,  H f C ,  NbC, TaC, 

Mo C, WC) n i t r i d e s  (T iN,  ZrN),  and borides (TiB2, ZrB2, 

TaB ) with so l id  Nb, Ta, Mo, and W held i n  contact a t  900 

t o  220OoC f o r  2 o r  5 h r  i n  a vacuum. 

/167* 

2 
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Data obtained by microscopic examination and micro- 

hardness measurements show t h a t  up t o  l l O O ° C  none of t h e  

compounds t e s t ed  r eac t s  with r e f r a c t o r y  metals. Borides, 

which appear t o  be t h e  most ac t ive ,  begin t o  r e a c t  f i rs t ,  

e.g., ZrB2 with Nb a t  l l O O ° C  and with W, Mo, and Ta a t  

12OO0C; TiB2 wi th  Nb and Mo a t  12OO0C; and TaB2 wi th  W, Mo, 

Ta,  and Nb a t  1 6 0 0 ~ ~ .  

with r e f r ac to ry  metals: 

Ta,  ZrC and Nb, and TaC and Nb begin a t  1000°C; those be- 

tween T i c  and Nb; NbC and Nb, Ta, o r  Mo; Mo C and Ta,  Mo, 

Carbides a r e  more s t a b l e  i n  contact 

reac t ions  between H f C  and N r  o r  

2 

* Numbers given i n  the  margin ind ica te  the  pagination i n  t h e  o r i g i n a l  fo re ign  

t e x t .  
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o r  W; and WC and T a  begin a t  1 8 0 0 ~ ~ .  

a t  220OoC i s  s t a b l e  i n  contact with Ta, the  most s t a b l e  com- 

Along with TaC, which 

pounds were found t o  be n i t r i d e s  T i N  and, e spec ia l ly ,  ZrN. 

Except f o r  a r eac t ion  wi th  Nb a t  18oo0c, T i N  does not r e a c t  

a t  temperatures below 20OO0C. ZrN r e a c t s  with Nb a t  20OO0C 

and with Mo a t  2100°C but does not r e a c t  wi th  Ta or W even 

a t  2 1 0 0 ~ ~ .  

The development of high-temperature technology i s  r e s t r i c t e d  i n  many cases 

by the  lack  of ma te r i a l s  which a r e  s t ab le  i n  contact with one another under 

these  conditions. I n  p a r t i c u l a r ,  of considerable p r a c t i c a l  i n t e r e s t  i s  t h e  

knowledge of the  nature of t he  in t e rac t ion  between r e f r a c t o r y  compounds and 

r e f r a c t o r y  metals during mutual contact i n  t he  so l id  s t a t e  a t  high temperatures. 

Information on t h i s  problem i s  very scarce ( r e f .  1) and has not been systematic; 

f o r  t h i s  reason, the  present  study was undertaken. 

A study was made of t h e  behavior during heating of carbides ( T i c ,  Z r C ,  

H f C ,  NbC, TaC, Mo C and W C ) ,  n i t r i d e s  (TiN, Z r N )  and borides (TiB2, ZrB2 and 

TaB ) held i n  contact with compact re f rac tory  metals (Nb, Ta, Mo and W )  exposed 

i n  a vacuum t o  temperatures of 9OO-22OO0 f o r  up t o  3 hr .  

2 

2 

Samples of r e f r ac to ry  metals i n  the  form of prisms or hal f -cy l inders  were 

pressed i n t o  carbide, boride o r  n i t r i d e  powders i n  g raph i t e  d i e s  ( f i g .  1). 

Assuming t h a t  t he  r eac t ion  of carbides with graphi te  occurs a t  very high t e m -  

pe ra tu re s ,  of the order of 3000' and higher (refs. 2 and 3) ,  and t h a t  borides 

do not r e a c t  with graphi te  e i t h e r  up t o  2200-2300° (ref.  4), the  samples of 

r e f r a c t o r y  metals were pressed i n  carbide and boride powders d i r e c t l y  i n t o  

g raph i t e  molds. However, i n  the case of n i t r i d e s ,  which r e a d i l y  r e a c t  with 

2 



graphite, the samples were pressed in molds lined with sheet tantalum or molyb- 

denum. The "compacts" prepared in this manner were heated in a vacuum retort 

furnace (ref. 5) by passing the current directly through the mold and con- 

trolling the temperature with an optical pyrometer. After heating under a 

predetermined schedule, the compacts were furnace-cooled, the metal samples 

were extracted, and polished sections were prepared for subsequent micro- 

structural analyses and microhardness measurements (under a 50 g load). 1 

Figure 1. 

in the die: 1, graphite matrix; 2, punch; 

3, sample of refractory metal; 4, powder of 

refractory compound; 5, molybdenum or tanta- 

lum lining. 

Diagram of the packing of samples 

'In the original state, the metals studied had the following microhardness 

values (in kg/mm2): Na, 195; Ta, 396; Mo, 276; W - 400. 
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In t e rac t ion  with Carbides 

Results of a v i sua l  study of t h e  nature of t he  i n t e r a c t i o n  between the  

r e f r ac to ry  metals and carbides a re  given i n  f i g u r e  2, which shows t h a t  a t  1600~ 

almost a l l  t h e  metals are s t a b l e  i n  contact wi th  carbides except t he  p a i r s  

ZrC-Nb, HfC-Nb, HfC-Ta and TaC-Nb, during t h e  5 h r  contact of which a s l i g h t  

i n t e r a c t i o n  i s  observed (blackened areas of t h e  columns i n  f i g u r e  2 ) .  A t  

0 1800 , t h i s  i n t e r a c t i o n  becomes in t ens i f i ed ,  and an i n t e r a c t i o n  i s  a l s o  seen 

t o  begin i n  the  p a i r s  Tic-Nb, HfT-Mo, NbC-Nb,hNbC-Mo, Mo2C-Ta, Mo2C-Mo, Mo2c'-W 

and WC-Ta. 

NbC-T-7 

A t  2000°, a more o r  l e s s  ac t ive  i n t e r a c t i o n  i s  observed i n  a l l  

p a i r s  except Tic-Ta, ZrC-Ta, ZrC-W, NbC-W, TaC-Mo and during b r i e f  contact i n  

the WC-W p a i r .  F ina l ly ,  a t  2200°, the most s t a b l e  p a i r  i s  TaC-Ta, while a 

r e l a t i v e l y  weak i n t e r a c t i o n  i s  a l s o  observed i n  the  p a i r s  Tic-Ta,  ZrC-Mo, 

HfC-Ta, HfC-W, TaC-Mo, Mo2C-W and WC-Ta. 

When T i c  i s  i n  contact withNb a t  1800°, a phase i s  formed with a hardness 

of 3150 kg/mm2 ( the  microhardness of T i c  and N b C  i s  r e spec t ive ly  3000 and 1960 

kg/mm2) a t  the  boundary with niobium ( f i g .  3a),  whereas a t  2000' the  microhard- 

ness of t h i s  phase rises t o  3500 kg/mm2 ( t a b l e  1). 

erence 6, according t o  which t h e  hardness i n  t h e  system Tic-NbC changes without 

Based on t h e  d a t a  of ref- /I68 

extrema, it i s  d i f f i c u l t  t o  reach any d e f i n i t e  conclusions concerning t h e  

na ture  of t h i s  phase. 

When T i c  i s  held i n  contact with Ta a t  temperatures up t o  2000°, a phase 

i s  formed whose m i e m h n r d n e s s  i s  2400 kg/mm2 ( t a b l e  l), which corresponds t o  

t h e  hardness of t h e  so l id  so lu t ion  Tic-TaC with a content of 50 mol percent 

TaC. A t  22OOo, the  hardness of the phase cieci-i.aSSS ts 186C k g / m m 2 ;  t h i s  i s  

assoc ia ted  with an increase i n  TaC concentration i n  the  so l id  so lu t ion  t o  80-85 

mol percent .  The r ise  i n  the TaC concentration i n  the  s o l i d  so lu t ion  Tic-TaC 

4 



- 
Y 
d 
t- 
al 
E 
W 
no 
Ta 
N b  
W 
- 
no 
Ta 
Nb 
W 
M O  
la  
Nb 
W 
NO 
Ta 

- 

- 

3 
MO 
Ta 
N b  
.W 
NO 
Ta 

n4 
Tu 
Nb 
'E ; 

- 

% 
- 

Yem = none ,- 
Figure 2. Nature of t h e  contact i n t e rac t ion  

between carbides and r e f r a c t o r y  metals a t  

1600- 2200'. 

with r i s i n g  contact temperature of the Tic-TaC p a i r  agrees w e l l  with t h e  d i f -  

ference i n  the en tha lp ies  of formation of T i c  and TaC ( the  heat of formation 

of T i c  i s  about twice as high as  tha t  of TaC). 

I n  the  i n t e r a c t i o n  of T i c  wi th  W,  which begins only a t  2000°, a phase with 

a low microhardness (490 kg/mm2) i s  formed which, according t o  the  diagram of t h e  

pseudobinary system Tic-W (ref. 7) ,  represents  a so l id  so lu t ion  of tungsten i n  

T i c .  I n  accordance with t h i s  diagram, one shouiii e q e c t  a ccnsiderahle i n t e r -  

a c t i o n  of T i c  with W a t  lower temperatures a s  well ,  but a t  long exposures. 

Figure 3b shows the  na ture  of the  in t e rac t ion  between T i c  and W when t h e  two 

a r e  held i n  contact f o r  3 h r .  

a t  pooo ' 
E\ 

I 
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Figure 3. Microstructures of contact boundaries between r e f r ac to ry  metals and 

carbides  high temperatures sf ter  a, 5-hr contact :  a - Nb and T i c ,  1800°, etching 

with HF + HN03 + H2O mixture (1 - Nb, 2 - new phase); b - W and T i c ,  2200°, no 

e.tchLng (1 - W; 3 - reac t ion  products); c - Nb and ZrC,  2000°, no etching (1 - Nb, 

2 and 3 - new phase); d - Ta and ZrC, 2200°, no etching (1 - T’a, 2 and j - iiew 

phase);  e - Mo and Z r C ,  2000°, etching with H202 (1 - Mo, 2 - new phase); f - W 

and Z r C ,  2200°, no 

e tch ing  (1 - Nb, 2 - l a y e r ) ;  h - Ta and HfT ,  2200°, e tching with HF + “0s + H20 
mixture (1 - Ta, 2 and 3 - new phase); i - Mo and H f C ,  2200°, e tching with H202 
(1 - Mo, 2 - l a y e r ) ;  ( X 200). 

e tching (1 - W, 2 - new phase); g - Nb and H f C ,  2000°, no 
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Zirconium carbide i s  s l i g h t l y  l e s s  s t a b l e  i n  contac t  with r e f r a c t o r y  

metals ( f i g .  2 ) ,  p a r t i c u l a r l y  a t  high temperatures. It begins t o  r e a c t  w i t h  

niobium even a t  moderate temperatures t o  form a f r o n t a l  l a y e r  of a phase which 

penet ra tes  deep i n t o  the  compact metal along the  g ra in  boundaries ( f i g .  3c) and 

has a hardness close t o  t h a t  of ZrC;  apparently, t h i s  phase i s  the  s o l i d  solu- 

t i o n  ZrC-NbC with a low concentration of t h e  l a t t e r ,  a s  i n  the  case of the  

so l id  so lu t ions  Tic-NbC ( r e f .  6 ) .  A t  t he  same t i m e ,  t h e  hardness of 11.71 

niobium rises i n  the  v i c i n i t y  of t he  contact boundary because of t h e  d i s so lu t ion  

of excess carbon formed by the reac t ion  ZrC + Nb -, ZrC-NbC + C i n  niobium 

( t a b l e  1). 

When Z r C  i s  i n  contact with T a ,  the r eac t ion  begins only a t  2200' with 

t h e  f z rma t ien  ~f +Rnt .a lum monocarbide ( the  hardness of t h i s  phase i s  1580, t h a t  

of TaC, 1599 kg/mm2), and the  outer  por t ion  of t he  TaC l a y e r  pee l s  off ( f i g .  

3d). 

d i s so lu t ion  of zirconium, which is s e t  f r e e  during the  contact reac t ion .  Since 

the  hea t  of formation of tantalum carbide i s  considerably l e s s  than t h a t  of 

zirconium carbide,  t he  formation of TaC during the  contact of ZrC  wi th  Ta i s  

due t o  the  s u b s t a n t i a l  decrease i n  f r e e  energy upon d i s so lu t ion  of zirconium 

i n  tantalum; t h i s  agrees s a t i s f a c t o r i l y  wi th  t h e  ex is tence  of a f a i r l y  wide 

region of s o l u b i l i t y  of zirconium i n  tantalum (ref.  8) .  

The hardness of tantalum increases markedly, apparently a s  a r e s u l t  of t h e  

The reac t ion  of ZrC  with Mo begins a t  about 1900° with  the  formation of a 

35ree r.zhnce hs r r lnes s  i s  close t o  tha t  of ZrC;  a t  2200' 

considerably ( t a b l e  l), apparently owing t o  t h e  formation of a s o l i d  so lu t ion  

of zirconium and molybdenum carbides. sit: gi-a:r,a ef t h l c  ;3hlce (fig- ,?e) are 

round i n  9 shuprwhich resembles t h a t  of g ra ins  of t he  so l id  so lu t ion  Tic-WC 

obtained by r e c r y s t a l l i z a t i o n  through a cobal t  m e l t  ( r e f .  9 ) .  The hardness of 

t h i s  hardness increases  

8 



t he  molybdenum remains p r a c t i c a l l y  unchanged ( t a b l e  l), r i s i n g  s l i g h t l y  only a t  

the  boundary with ZrC.  

With tungsten, ZrC begins t o  reac t  only a t  2200' t o  form a f r o n t a l  l a y e r  

of a new phase ( f i g .  3f) having a high hardness; t he re  i s  an appreciable in-  

crease i n  the  hardness of tungsten i t s e l f  ( t ab le  1). Hafnium carbide proved 

l e a s t  s t a b l e  i n  contact with r e f r ac to ry  metals during heating ( f i g .  2 ) .  

r e a c t s  wi th  niobium as low a s  1600~ t o  form a very hard phase whose microhard- 

ness decreases with r i s i n g  contact temperature ( t a b l e  1). This phase cons i s t s  

of a s o l i d  so lu t ion  of hafnium and niobium monocarbides; i n  addi t ion  t o  being 

very hard, t h i s  phase i s  known t o  have high melting po in t s .  The so l id  so lu t ion  

forms on the  surface of niobium 

22QCIo, the r eac t ion  between H f C  and Nb p r a c t i c a l l y  proceeds t o  completion, and 

t h e  excess carbon l ibe ra t ed  by t h e  reac t ion  H f C  + Nb + HfC-NbC + C forms 

c h a r a c t e r i s t i c  spher ica l  segregations i n  t h e  l a y e r  of the  s o l i d  so lu t ion .  

It 

i n  the form of a f r o n t a l  l a y e r  ( f i g .  3g); a t  

With tantalum, hafnium carbide begins t o  r e a c t  as low a s  1600°, but the  

r eac t ion  i s  slow up t o  high temperatures ( f i g .  3h), forming a narrow f r o n t a l  

l a y e r  and involving a p a r t i a l  pene t ra t ion  of t h e  new phase i n t o  the  tantalum 

sample. 

f u l .  

carbon the re in .  

Measurements of t h e  microhardness of t h i s  phase have been unsuccess- 

The hardness of tantalum obviously increases  owing t o  the  d i s so lu t ion  of 

The i n t e r a c t i o n  of H f C  with molybdenum proceeds vigorously ( f i g .  3 i ) ,  with 

t h e  fn rmnt io f i  of a f r o n t a l  l aye r  of a new phase ( so l id  so lu t ion  of carb ides)  

having a hardness of 1800-1900 kg/mm . 
of a s o l i d  so lu t ion  of moiyoaenum i n  i i a l " r i i U 1 1 ~  ctii-"ulde, a l m l l ~ , r  t~ +ha c n l i d  --&A- 

so lu t ion  of WC i n  T i c .  This i s  supported by the  f a c t  t h a t  the hardness of 

molybdenum remains p r a c t i c a l l y  unchanged ( t ab le  1) ; t h i s  would not occur during 

2 It i s  poss ib le  t h a t  t h i s  phase cons i s t s  

9 



the  formation of a so l id  so lu t ion  of carbides and the  formation of f r e e  carbon, 

which would d isso lve  i n  molybdenum and thus necessa r i ly  r a i s e  i t s  hardness. 

The l e a s t  extensive r eac t ion  of H f C  i s  observed wi th  tungsten; it i s  

associated with the  formation of a phase with a hardness of 3400-3600 kg/mm2 

and a s u b s t a n t i a l  increase i n  t h e  hardness of tungsten.  

Like hafnium carbide,  niobium carbide i s  not very s t a b l e  when heated 1172 

i n  contact with r e f r a c t o r y  metals ( f i g .  2 ) .  

When NbC r e a c t s  wi th  niobium, the formation of an ou te r  l aye r  of a new 

phase i s  not observed up t o  2000': s t a r t i n g  a t  2000' and above, a t h i n  l a y e r  i s  

observed whose hardness cannot be measured. The hardness a t  t he  center  of t he  

niobium sample remains p r a c t i c a l l y  unchanged ( f i g .  4), and t h e  hardness of t he  

edge irici-eases regulzr ly ,  q F n r e n t l y  owing t o  the  formation of a so l id  so lu t ion  

of carbon. Hence, it may be assumed t h a t  the  phase forming on the surface of 

t h e  contact cons i s t s  of t h e  lower niobium carbide Nb$. 

The reac t ion  of NbC with tantalum begins a t  1800~ and i s  somewhat enhanced 

a s  the  temperature r i s e s .  

kg/mm2, which i s  close t o  the  hardness of t he  s o l i d  so lu t ion  Nb2C-Ta2C wi th  an 

approximately equimolar concentration of t he  components. 

The hardness of t he  l a y e r  formed a t  18000 i s  1900 

A t  2000°, t he  hardness 

Figure 4. 

NbC on the microhardness of t he  center  (1) and edge 

(2) of niobium sample ( a )  and a l s o  of t he  phase 

formed i n  molybdenum under these  conditions ( b ) .  

E f fec t  of temperature of contact with 

10 



of the  new phase becomes approximately 2300 kg/mm2, and a t  2200°, double l aye r s  

a re  formed ( f i g .  5a ) ,  the  l a y e r  adjoining tantalum having a hardness of 1890, 

and the  outer layer ,  a hardness of about 3470 kg/mm2; a t  the  same time, the 

hardness of tantalum increases  ( t a b l e  1). 

When NbC i s  i n  contac t  with molybdenum a t  high temperatures, t he  r eac t ion  

begins a t  1 8 0 0 ~  with the  formation of a porous l a y e r  of a phase ( f i g .  5b) whose 

hardness increases monotonically with t h e  temperature ( f i g .  4b) , reaching 

values c lose  t o  the  hardness of Mo2C and MoC (about 1500 kg/mm2). A t  t h e  same 

t i m e ,  t h e  hardness of molybdenum increases s u b s t a n t i a l l y  owing t o  the  d isso lu-  

t i o n  of carbon the re in .  

Niobium carbide r e a c t s  with tungsten only beginning a t  2200'; t h e  phase 

thus formed has a high rniu'ehardxos (tahle 1 ) .  

a c h a r a c t e r i s t i c  f e a t u r e  of t h i s  phase i s  i t s  deep pene t r a t ion  i n t o  the  

tungsten sample ( f i g .  ? e ) .  

I ts  nature i s  a t  y e t  unclear;  

With niobium, tantalum carbide begins t o  r e a c t  a t  1600' ( f i g .  2),  i . e . ,  

a t  lower temperatures than NbC r eac t s  with Ta; a phase i s  formed a t  once which 

has a very high hardness ( t a b l e  1). 

becomes about 4000 kg/mm2, which i s  close t o  the  hardness of t he  phase formed 

a f t e r  contact between NbC and Ta a t  2200'. The hardness of niobium a t  t h e  con- 

t a c t  surface increases by a f a c t o r  of 1 .5  and changes l i t t l e  with r i s i n g  tem- 

pe ra tu re .  The new phase cons t i t u t e s  a broad and well-formed l a y e r  ( f i g .  5d). 

After contact a t  1800-2200°, t h i s  hardness 

With tantalum, TaC l i x s  no t  reac t .  even a t  2200'; t h i s  i s  due pr imar i ly  t o  

a considerably smaller hea t  of t h e  reac t ion  of formation of Ta2C (15.5 kca l /  

mol) as compared t o  TaC (36 kcal/mol), which renders ilie r e ~ e t l a r z  hetween Ta 

and TaC improbable. 

11 
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Figure 5 .  Microstructures of contact boundaries between r e f r ac to ry  

metals and carbides a t  high temperatures a f t e r  5 hr:  

NbC, 2200°, etching with HF + HNO + H20 mixture (1 - Ta ,  2 and 3 - 3 
new phases);  b - Mo and N b C ,  1800°, etching with H202 (1 - Mo, 2 - 

new phase); c - W and NbC, 2200°, no etching (1 - W, 2 - new phase); 

a - T a  and 

d - Nb and TaC, 2200°, etching with HF + HNO + H20 mixture ( 1 - Nb, 3 
2 - new phase); e - Mo and TaC, 2200°, etching wi th  H202 (1 - Mo, 

2 - new phase); f - W and TaC, 2200°, etching with H 0 

new pilase); ( X  2 ~ ) .  

(1 - W, 2 - 2 2  

With molybdenum, tantalum carbide begins t o  r e a c t  a t  2200'; t he  phase thus 

formed i s  very hard ( t a b l e  1) and the hardness of molybdenum both a t  the center  

12  



and at the edge of the sample remains practically unchanged. 

is porous (fig 5e). 

is formed (fig. 5f) with a hardness of about 3500 kg/mm2; at the same time, the 

hardness of tungsten increases appreciably (table 1). 

data of reference 6 the hardness of the phases in the system TaC-WC does not 

exceed 1800 kg/mm2, it may be assumed that the high hardness of the phases /173 

resulting from the reaction of TaC with Mo and W is due to the formation of 

complex ternary phases of the systems Ta-Mo-C and Ta-W-C. 

The layer formed 

When TaC reacts with tungsten, a dense layer of a new phase 

Since according to the 

Reaction with Nitrides 

As follows from the data shown in figure 6, titanium and zirconium nitrides 

behave in a relatively stable manner in contact with refractory metals at high 

temperatures; this is particularly true of zirconium nitride. Both nitrides are 

least stable in contact with niobium. 

NOTE: H e m  =none  

Figure 6. 

nitrides and refractory metals at 1600-2100°. 

Nature of contact interaction between 



J '  

The reac t ion  of t i t an ium n i t r i d e  with niobium i s  already appreciable a t  

1800°, and a t  2100' almost a l l  the  niobium converts i n t o  new phases. 

(5 h r )  and 2000°, a homogeneous phase i s  formed ( f i g  7a) wi th  a hardness of 

1800-2mo kg/mm2 ( t a b l e  2 ) ,  which apparently corresponds t o  a so l id  so lu t ion  of 

t i tanium n i t r i d e  and niobium n i t r i d e  (TiN-NbN).  

formed having a hardness which changes wi th  the  contact time: 

( 5  h r ) ,  and 1950 kg/mm2 (8 h r ) .  

A t  1800~ 

A t  2100°, a l a y e r  of a phase i s  

l25O ( 2  h r ) ,  1600 

It may be assumed t h a t  when the  contac t  /174 

Figure 7. Microstructures of contact boundaries between 

r e f r ac to ry  metals and n i t r i d e s  a t  high temperatures a f t e r  

2-5 hr:  a - Nb and TiN,  2000°, 5 hr ,  no etching (1 - Nb, 

2 - nev phese); b - same, 2100°, etching with HF + RN03 + 

H20 mixture; c - Ta and T i N ,  2000°, 2 h r ,  etching with 

KF + " 0  

d - Mo and TiN,  2100°, 3.5 hr ,  etching with B 0 

2 - T i N ) ;  ( X  200). 

+ H20 mixture (i - Ta, 2 Z i i i  3 - ~ 2 : :  p k s e s ) ;  3 
(1 - Mo, 2 2  

14 



Fr 
0 
n 
a, 
v) 
a c 
PI 

5 
I 

0 

a, 
M 
5 
a, 

I 

.\ 

P 

k 
a, 
-P 

0 

I 

(d 

.\ 

% 

v 

$ cn 

Fr 
0 

cn 
H 
E-l 
ffi 
0 
PI 

E 

0 

3 

E! 

3 
Fr 
0 

cn 

8 0 

ffi 
V 

$2 
cu 
w 4 
E-l 

m 

=' p 
-- 

- ; I .  

W h l  L-OV-VJ-I-0 

+I +I +I t +I I +I +I +I +I +I 4 +I +I 
m-m W .Nea- -s l -cc  E 

I ' z  :PI z I I  I I I I I I I I 

0 1  
e m  



t i m e  i s  short  at  2100°, t h i s  layer  cons is t s  of t he  n i t r i d e  NbN (according 

t o  the  data of ref. 10, the hardness of NbN i s  1396 kg/mm2) w i t h  a c e r t a i n  

def ic iency of nitrogen; a f t e r  5 hr 

1720 kg/mm2) and a f t e r  longer periods,  of a s o l i d  solut ion of TiN i n  Nbg. 

The layer  formed a f t e r  5 hr at 2100' is dense and adheres w e l l  t o  niobium 

it cons i s t s  of t he  n i t r i d e  Nb2N (hardness 

( f i g .  To) .  

With tantalum, t i tanium n i t r i d e  begins t o  r e a c t  during the f i rs t  two hours 

of contact  at 2000O; it may be tha t  the temperature of the start of t he  reac t ion  

i s  even lower. 

adjoining tantalum has a low hardness of about 870 &/ram2 (apparent ly  a layer  

de f i c i en t  i n  nitrogen and consis t ing of the n i t r i d e  TaJT),l and the outer  layer  

iitts a li&-hess of 2300 kg/m* and r n n s i s t s  of a s o l i d  solut ion of tantalum 

A t  2000°, double layers  are formed ( f i g .  7c);  the l aye r  

n i t r i d e  and t i tanium n i t r i d e  ( o r ,  more probably, of a te rnary  chemical com- 

ponent of the  system Ta-Ti-N).  

When t i tanium n i t r i d e  i s  he ld  i n  contact w i t h  molybdenum, a s l i g h t  bu t  

v i s i b l e  r eac t ion  begins at 2000' and ends mainly i n  the d isso lu t ion  of 

ni t rogen i n  molybdenum, as indicated by an increase i n  the hardness of t h e  

l a t te r  (table 2) .  No new chemical compounds are formed during the  contact  

heat ing,  which i s  i n  agreement w i t h  the thermodynamic i n s t a b i l i t y  of molybdenum 

n i t r i d e s  ( ref .  1); the t i tanium n i t r i d e  powder around the molybdenum sample 

( f i g .  7d) s i n t e r s ,  and i t s  hardness within the l i m i t s  of experimentd e r r o r  

remains eqiiii. t o  the hsriiness of titmtium n i t r i d e  (ref.  10). 

With tungsten,  t he  react ion of t i tanium n i t r i d e  begins at 2000° and proceeds 

more extensively than w i t h  molybdenum, b u t ,  as i n  the case of t he  l a t t e r ,  i s  

l imited by t h e  formation of a so l id  so lu t ion  of nitrogen i n  tungsten,  t h e  

hardness of t i t an ium n i t r i d e  remaining the same. 

'The hardness of TaN given by reference 10 is 1060 kg/mm . 2 
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Experiments on the in t e rac t ion  of niobium w i t h  t i t an ium n i t r i d e  containing 

i n s u f f i c i e n t  nitrogen ( i .e . ,  i n  the  region of homogeneity of the Ti-N phase) 

have shown tha t  this  in t e rac t ion  i s  enhanced as the ni t rogen content of 

t i tanium n i t r i d e  decreases.  

When zirconium n i t r i d e  reacts w i t h  niobium at all of t h e  temperatures 

s tudied,  a broad layer  of reac t ion  products is  observed on the niobium samples; 

on the basis of the i r  hardness, these products represent  t e rna ry  phmes of the 

system Z r  -Nb -N . 
The react ion of zirconium n i t r i d e  w i t h  tantalum i s  l imi ted  by a c e r t a i n  

d isso lu t ion  of nitrogen i n  t a n t a l u m  ( t ab le  2 ) ,  which corresponds t o  the  absence 

of stable te rnary  chemical compounds i n  the  Zr-Ta-N system. 

On the contrary,  thc rnxt . ion of zirconium n i t r i d e  w i t h  molybdenum at 

2100O r e s u l t s  i n  the formation of a new phase w i t h  a hardness of 2800 kg/mm2, 

which i s  twice that  of ZrN and four  times that of MoN. 

I n  the ZrN-W system, no react ion i s  observed even at high /176 

temperatures if a c e r t a i n  dissolut ion of nitrogen i n  tungsten i s  not considered. 

In t e rac t ion  w i t h  Borides. A s  can be seen from f i g u r e  8, t i tanium diboride 

(TiB2) i s  most stable i n  contact with r e f r ac to ry  metals at high temperature; 

zirconium boride (ZrB2) is  s l i g h t l y  less stable. 

b u t  at high temperatures, when ti tanium and zirconium diborides  r eac t  very 

ac t ive ly  w i t h  r e f r ac to ry  m e t a l s .  

TaB2 displays a low s t a b i l i t y ,  

m Table 3 l i s t s  d a t a  03 t h e  microhardness f o r  the phases formed 

when ZrBg i s  held i n  contact with re f rac tory  m e t a l s  at high temperatures. 

I n  all cases ,  borides  of the  corresponding refractory iiiztL8 ~4 t h e i r  s o l i d  

so lu t ions  w i t h  zirconium boride are formed, while at t h e  same t i m e  boron 

d isso lves  i n  the r e f r ac to ry  metals. 

17 



Figure 8. 

1 

NOT F; Hem = n o n e  I 

Nature of contact i n t e rac t ion  between 

borides  and r e f r ac to ry  m e t a l s  at 900-2100°. 

TABLE 3. MICROHARDNESS OF VARIOUS PORTIONS OF SAMPLllS 

( a  - center ,  b - edge, c - new phase) OF RF,FRACMRY 

Nb 

Ta 

Mo 

W 

- - - 15528 207216 24912188 10221 13129 32GO+111 
172212 242210 28642321 131212 210211 27172291 2 0 2 ~ 6  19625 34872237 I 
- - - 383223 383223 25952170 40729 469218 3183+25 , 

440211 49229 2205+190 426228 47428 266Gk74 439r17 412224 2973+32U - - - 247219 254+-29 3065+-167 22127 23627 2814250 
26225 2 7 2 2 i 7  2106215 22929 244211 27342159 228_+5 23923 2404+10 
- - - 519222 522k16 30182305 477228 516k26 2353+24:! 

529k13 552k22 3357k153 567k15 532k20 2963ki03 528,t l I  551 * I 6  27952245 

Figure 9 shows the  temperature dependence of the thickness  of the layers  

fnrmed when ZrB2 Ts held i n  c o n t z t  w i t h  r e f r ac to ry  metals f o r  5 hours. 

the basis of these data, an estimate w a s  m a d e  of the  coe f f i c i en t s  of react ion 

d i f fus ion  during t h e  reac t ion  of zirconium boride w i t h  these  meTaLs, an6 iiie 

corresponding ac t iva t ion  energies  were evaluated (table 4). 

d i f fus ion  one should expect a rise i n  the  ac t iva t ion  energy i n  passing 

On 

Since i n  ordinary 

/178 
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Figure 9. Effect  of temperature 

of contact  between ZrB2 and re- 

f r a c t o r y  metals (1 - m, 2 - W, 
J 2 - Ts; k - Mol on the thickness  
crf layers 

(formed, 6 ,  p. 

TABLE 4. 

ON THE THICKNESS OF LAYERS FORMED, COEFFICIENT OF REACTION DIFFUSION, AND 

EFFECT OF TEMPERATURE O F  CONTACT BETWEEN ZrB2 AND REFRACTORY METALS 

1200 
1300 
1300 
1400 
1400 
1200 
1300 
1300 
1400 

ACTIVATION ENERGY. 

5 
2 
5 
2 
5 
5 
2 
5 
2 

5 
2 
5 
2 
5 
5 
2 
5 
2 
5 

10 0.14 
9 0.28 

27 1.00 
30 3.00 
36 1.80 
20 0.56 
30 3.00 
55, 4.20 
901 30.00 

1501 31.w 

< 
L 7  - 
10 
15 
30 
100 
180 
35 
30 
40 
44 
84 

O . l <  
0.8U 

35.00 
45.00 
1.70 
3.10 
2.20 - 63 

,9.% ; 

1.20 7 1 2 4  

. 
6.70 * 

from the less t o  the more re f rac tory  metals, t he  d a t a  obtained, which do not 

behave i n  t h i s  manner, ind ica te  the  nature of t he  phases formed and t h e i r  

thermodynamic s t a b i l i t y .  



These r e s u l t s  show that when ZrB2 r eac t s  w i t h  Nb, Ta and W, mainly so l id  

solutions of borides are formed; w i t h  molybdenum, ternary chemical compounds 

Zr-Mo-B are formed w i t h  c rys t a l  s t ructures  d i f f e ren t  from the  s t ruc ture  of 

molybdenum and from t h a t  of ZrB2; the  formation of these compounds involves 

a complete rearrangement of t h e  c rys t a l  l a t t i c e s  of the phases i n  contact.  

Tantalum boride paired with niobium begins t o  reac t  appreciably ( f i g .  8) 

as l o w  as 1600' t o  form a phase which can be iden t i f i ed  as T& based on i t s  

microhardness (table 3) ; a f t e r  longer exposures at 1600° and also at higher 

temperatures, a f r o n t a l  layer  of a phase close i n  hardness t o  NbB2 i s  formed, 

and at 20000 and higher,  the hardness of the phase on the niobium samples 

decreases again, while p rac t i ca l ly  a l l  of the niobium enters  i n t o  the reaction. 
(GIG. 9) 

With tnt.&inj T d L  reacts less extensively& it begins t o  react at 1600~ c 

t o  form the phase Ta3B4, and the phase Ta3B2 i s  formed a t  18000. 

two layers  are formed on tantalum, an outer layer  of Ta  B 

shown i n  f igu re  loa) and an inner layer adjoining t a n t a l u m  and having a hardness 

of 2170 kg/mm2, which i s  below the hardness of Ta3B2. 

t o  cons is t  of the lower tantalum boride Ta@ (ref.  11). 

A t  2000°, 

(columnar c rys t a l s  3 2  

The latter phase appears 

Since the  hardness of borides i s  determined within the l i m i t s  of each 

given Me-B system by the character of the s t ruc tu ra l  elements of boron atoms 

and decreases ( f i g .  11) when these elements are s implif ied ( ref .  11) , it should 

be expected t h a t  the conversion from the Ta3B2 phase t o  the  Ta$ phase and 

f u r t h e r  tc m t d l i c  tantdim nr more accurately,  t o  a so l id  solut ion of 

boron i n  tantalum w i l l  occur w i t h  a monotonic change i n  microhardness /180 
which can be roughly approximated by a straighz Line.' 

Footnote car r ied  over t o  next page. 
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Figure 10. Microstructures of  contact boundaries between tantalum 

and TaB2 and 

etching (1 - 

(1 - Mo, 2 - 

I n  addi t ion,  

molybdenum and TaB2 a t  2000° a f t e r  5 hr:  

Ta, 2 - Ta2B, 3 - Ta B ); b - Mo, etching with H 0 

a - Ta, no 

3 2  2 2  

M O ~ B ) ;  ( x  200). 

2 the phase with a hardness of 2170 kg/mm , formed i n  d i r e c t  

rnn tac t .  wi th  tantalum a t  2000°, should correspond t o  a boron content ( see  

f i g .  11) of approximately 2.7 percent,  which i s  i n  good agreement with the  

boron content i n  the T a p  phase (2.9 percent) .  The extreme l e f t  po in t  on 

the  curve, located on the  hardness axis, corresponds t o  the  hardness of a 

so l id  so lu t ion  of boron i n  tantalum, which, judging from the  da ta  i n  t a b l e  

5 ,  i s  formed a t  a l l  temperatures of contact between TdB2 and tantalum. 

When Tal3 r eac t s  with molybdenum, the  reac t ion  begins as low a s  1600°, 2 

and a t  2100' almost t he  e n t i r e  sample en te r s  i n t o  it. 

phase, which forms a l aye r  penetrat ing deep i n t o  the  molybdenum sample i n  

'This monotonicity should take place only f o r  s imi l a r  s t r u c t u r a l  elements made 

lip of boron atoms i n  boride s t ructures:  

(MeB), paired boron atoms (Me B ) and s ing le  mutually i so l a t ed  atoms (Me$). 

For t h i s  reason, the hardness of ivieB2, w h i c h  has r l t . t i . i ~ ~ E ; b  of I----- U U I  VI1 CL U V U L O  --'+L w.L "AI 

a d i s t i n c t  separat ion of the  s t r u c t u r a l  elements consis t ing of boron atoms 

and metal atoms, should not obey t h i s  general  r e l a t ionsh ip .  

Up t o  2100°, t h i s  

double chains (Me3B,!), s ing le  chains 

3 2  
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Figure 11. Hardness of tantalum 

boride vs. boron content. 

c e r t a i n  a reas  ( f i g .  lob), cons i s t s  of Mo9; a t  2100°, according t o  the  phase 

diagram of the  Mo-B system (ref. ll), t h i s  phase decomposes t o  form mainly MOB 

The r eac t ion  between TaB2 and tungsten begins a t  1600~ with the  formation 

one, a-WB, of t he  a-WB phase up t o  2100°, and a t  2100' two l aye r s  a r e  formed: 

adjoining the  tungsten l aye r ,  and an outer  l a y e r  whose hardness i s  c lose  t o  

t h a t  of W B 
2 5 .  

Summary 

1. The nature of t he  in t e rac t ion  of metall ike carbides ( T i c ,  Z r C ,  H f C ,  

NbC, TaC, Mo C and W C ) ,  n i t r i d e s  (TiN and Z r N )  and borides (TiB2, ZrB2 and 2 
m.7- \ 7 - - , 2  

LKLU l i i  coiitact wi th  mfrmtmy m e t a l s  (Kb, TR; MO and W )  a t  temperatures laD2) 

up t o  2100-2200' w a s  inves t iga ted ,  and preliminary assumptions were made con- 

cerning t h e  nature of t h e  phases thus formed and causes of t h e i r  Tormation. 

2. Borides were l e a s t  s t a b l e  i n  contact with r e f r a c t o r y  metals a t  high 

temperatures; n i t r i d e s  and c e r t a i n  carbides were more s t a b l e .  No i n t e r a c t i o n  



involving the formation of new chemical compounds is observed at 2200°, only in 

the case of contact between TaC and Ta and at 2100' between zirconium nitride 

and Ta and also W. 
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